Grant Report: Ethereum Foundation

Extraction of Zero-Knowledge circuits in
LLZK to Rocq

Date: 2025-07-31

To: Ethereum Foundation https://ethereum.foundation/
From: Formal Land (Arae) https://formal.land/
Contact: guillaume.claret@formal.land

v
~ <

v

This grant report is to answer the task: "Demonstrate a Plonky3 = Rocq extraction via
cog-of-rust " that we adapt to target LLZK instead, with a mechanized translation to

Rocqg and the verification of some examples.

Summary

We have built a translation tool from a subset of the LLZK language to the Rocq formal
verification language. This tool is built in C++ as an additional pass in the LLZK
infrastructure, which does nothing but print the Rocq translation. The code is available in
this pull request: https://github.com/formal-land/lizk-lib/pull/1

We have focused on the translation of this example file
test/Analysis/constraint_dependency_graph_pass.lizk, which is about 500 lines long
excluding comments. It uses various LLZK features, including the manipulation of
structures, arrays, function calls, and polymorphism.

We successfully translated this file in Rocq to the code in Garden/LLZK/translated.v, which
is of a similar size compared to the original .11zx file. We define a semantics for the LLZK
operators in Garden/LLZK/M.v. We specify and formally verify all the definitions in this

example to validate our reasoning rules, in the file Garden/LLZK/verification.v.

https://ethereum.foundation/
https://formal.land/
https://github.com/Veridise/llzk-lib
https://rocq-prover.org/
https://github.com/formal-land/llzk-lib/pull/1
https://github.com/formal-land/llzk-lib/blob/guillaume-claret%40first-rocq-output/test/Analysis/constraint_dependency_graph_pass.llzk
https://github.com/formal-land/garden/blob/main/Garden/LLZK/translated.v
https://github.com/formal-land/garden/blob/main/Garden/LLZK/M.v
https://github.com/formal-land/garden/blob/main/Garden/LLZK/verification.v

We wrote three blog posts to explain our work and welcome people to discuss:

o @ Beginning of a formal verification tool for LLZK
« @ Semantics for LLZK in Rocq

o ® Formal verification of LLZK circuits in Rocq

These blog posts provide more technical information about our translation and verification

process.

As future work, we plan to add more automation on the Rocq side to handle the repetitive
steps in the proofs and increase the support for the LLZK language. An example of a

construct that we do not handle yet is building arrays of a dynamic size, for example, in a
for loop. A solution is to unroll the loops, but this is not always the most convenient for

the verification process.

Translation

The translation is done in a single pass in C++, pretty-printing the Rocq translation on the
fly. We indent the output to make it readable. Most of the lines are short, as in SSA form,

only one operation is applied per line.

We had trouble printing the names of the variables, as this information is not available in
the AST. For that, we reuse pretty-printing facilities from the MLIR library, which does the
work to generate reasonable and non-conflicting names. This part is still a little bit fragile
and slow on large files (thousands of lines).

Here is an LLZK example that we will translate in this report:

function.def R@global add(%a: !felt.type, %b: !felt.type) -> !felt.type {
$c = felt.add %a, %b
function.return %c : !felt.type

struct.def @Adder {
struct.field @sum : !felt.type {llzk.pub}

function.def Qcompute (%a: !felt.type, %b: !felt.type) -> !struct.type<@Adder>
%$self = struct.new : !struct.type<@Adder>
%¥sum = function.call @global add(%a, %b)
(!felt.type, !felt.type) -> (!felt.type)
struct.writef %$self[@sum] = $sum : !struct.type<@Adder>, !felt.type
function.return %$self : !struct.type<@Adder>

function.def @constrain/(
$self: !struct.type<@Adder>, %a: !felt.type, %b: !felt.type

sum = struct.readf $self[@sum] : !struct.type<@Adder>, !felt.type
c = function.call @global add(%a, %b)

o0 o0 —~

https://formal.land/blog/2025/07/28/llzk-to-rocq-beginning
https://formal.land/blog/2025/07/30/llzk-to-rocq-semantics
https://formal.land/blog/2025/07/31/llzk-to-rocq-verification

(!felt.type, !felt.type) -> (!felt.type)
constrain.eqg %sum, %c : !felt.type

function.return

Representation

We make a shallow embedding of LLZK in Rocq, using purely functional definitions for as
many features as possible, including arrays, structures, and field elements manipulations,
as well as for loops which must be bounded. We still have some side effects, to enforce
a polynomial constraint, or mutate arrays or structures. We encode these side effects in a
free monad.

Here is the generated Rocq translation of the example above:

Definition global add {p} "{Prime p}
(arg fun 0 : Felt.t) (arg fun 1 : Felt.t)
M.t Felt.t :=
let var 0 : Felt.t := BinOp.add arg fun 0 arg fun 1 in
M.Pure var O.

Module Adder.
Record t : Set := {
sum : Felt.t;

Global Instance IsMapMop {p} "~ {Prime p} : MapMod t := {
map mod o := {|
sum := map_mod . (sum) ;

l'}7

Definition constrain {p} “~{Prime p}
(arg fun 0 : Adder.t) (arg fun 1 : Felt.t) (arg fun 2 : Felt.t)

M.t unit :=
let var 0 : Felt.t := arg fun 0. (Adder.sum) in
let* var 1 : Felt.t := global add arg fun 1 arg fun 2 in
let* : unit := M.AssertEqual var 0 var 1 in

M.Pure tt.

Definition compute {p} "{Prime p}
(arg fun 0 : Felt.t) (arg fun 1 : Felt.t)
M.t Adder.t :=

let* var self : Adder.t := M.CreateStruct in
let* var 0 : Felt.t := global add arg fun 0 arg fun 1 in
let* : unit := M.FieldWrite var self. (Adder.sum) var 0 in

M.Pure var_ self.
End Adder.

Here are the monad primitives that we currently have in Rocq:

Module M.
Inductive t : Set -> Set :=

| Pure {A : Set} (value : A) : t A
| AssertEqual {A : Set} (x1 x2 : A) : t unit
| AssertIn {A : Set} {Ns : list nat} (x : A) (array : Array.t A Ns) : t unit
| CreateStruct {A : Set} : t A
| FieldWrite {A : Set} (field : A) (value : A) : t unit
| Let {A B : Set} (e : t A) (k : A -> t B) : t B.
End M.

Here is a quick explanation of the primitives:

e pure iSthe return of a value

e AssertEqual IS the equality constraint (of two field elements)

e AssertIn IS the membership constraint (of a field element in an array)

e CreateStruct is the creation of a structure (undefined for now)

e Fieldwrite IS forcing the field of a structure to be equal to a given value

e Let isthe monadic bind

Reasoning rules

We use the usual reasoning principles for the purely functional part of the translation. For

the side effects, we have the following rules in Rocq:

Module Run.
Reserved Notation "{{ e Ei output , P }}".

Inductive t : forall {A : Set}, M.t A -> A -> Prop -> Prop :=
| Pure {A : Set} (value : A)
{{ M.Pure value Ei value, True }}
| AssertEqual {A : Set} (x1 x2 : A)
{{ M.AssertEqual x1 x2 Ei tt, x1 = x2 }}
| AssertIn {A : Set} {Ns : list nat} (x : A) (array : Array.t A Ns)
{{ M.AssertIn x array Ei
tt,
exists indexes, Array.MultiIndex.Valid.t indexes /\
Array.read array indexes = x
+}
| CreateStruct {A : Set} (value : A)
{{ M.CreateStruct Ei value, True }}
| FieldWrite {A : Set} (field : A)
{{ M.FieldWrite field field B tt, True }}
| Let {A B : Set}
(e : M.t A) (k : A -> M.t B) (value : A) (output : B) (Pl P2 : Prop)
{{ e Ei value, P1 }} ->
(P1 -> {{ k value B output, P2 }}) ->
{{ M.Let e k B output, P1 /\ P2 }}
| Implies {A : Set} (e : M.t A) (value : A) (Pl P2 : Prop)
{{ e Ei value, P1 }} ->
(P1 -> P2) ->

{({ e M value, P2 }}

where "{{ e Ei output , P }}" := (t e output P).
End Run.

The notation:
{{ e M output , P })

means that we can reduce the monadic expression e to the value output and that the
property p is true if we validate all the constraints (meaning that the circuit validates the

witness).

Our goal will be to show that we can evaluate the monadic expression of a circuit with a
property p of the form:

outputs = expected outputs of inputs

to ensure that the circuit has no under-constraints.
Here is a short explanation of each rule:

e rpure : we directly return the purely functional value and add no constraint

e AssertEqual : We add the equality constraint between the two arguments, and return
the unit value tt

e assertIn:we add the membership constraint between an element and an array

e CreateStruct : We create a structure that is declared in the code but not defined yet.
Here, the value of the structure is a "prophecy" and must be correctly guessed in the
proof in order not to get stuck later in the proof.

e Fieldwrite : We force, or check depending on the interpretation, the field of a
structure to be equal to a given value

e Let : We bind two monadic expressions, returning the conjunction of the two
properties for the constraints

e Implies : We can rewrite the property » to a nicer formula, as long as this is a
property that we imply with the current one. Note that we are interested in verifying
an implication but not an equivalence, as this is enough to ensure that the circuit has

no under-constraints.

Example proof

We specify and verify the example above to ensure that the constrain function cannot

validate a witness that is not the one generated by the compute function (no under-

constraints). We have done this exercise of specification and verification for the whole

example file that we are translating, which is about 500 lines long.

The formal specifications and proofs of the examples above are as follows. More details

are available in the blog posts.
Auxiliary function global add

Lemma global add eqg {p} "{Prime p} (x y : Felt.t)
{{ global add x vy M ((x + y) mod p)%Z, True }}.
Proof.
apply Run.Pure.
Qed.

Compute function

Lemma compute eq {p} " {Prime p} (x y : Felt.t)
{{ Adder.compute x y iﬂ
spec x y, True
b1
Proof.
unfold Adder.compute.
eapply Run.Implies. {
eapply Run.Let. {
eapply Run.CreateStruct with (value := Adder.Build t).
}
intros
eapply Run.Let. {
apply global add eq.
}
intros
eapply Run.Let. {
eapply Run.FieldWrite.
}
intros
apply Run.Pure.
}
easy.
Qed.

Constrain function

Lemma contrain implies {p} " {Prime p}
(self : Adder.t)
(x vy : Felt.t)

let self := map mod self in
{{ Adder.constrain self x y Ei
ke,
self = spec x y
b
Proof.

unfold Adder.constrain.

eapply Run.Implies. {
eapply Run.Let. {
apply global add eq.
}
intros
eapply Run.Let. {
apply Run.AssertEqual.

}
intros
apply Run.Pure.

}

unfold spec.

hauto 1lg: on.
Qed.

Conclusion

We are thankful to the Ethereum Foundation for funding this work and this opportunity,

and we are open to any feedback or discussion.

In the future, we plan to continue extending the support for the LLZK language and to add

more automation on the proof side in Rocq.

&

https://ethereum.foundation/

