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This grant report is to answer the task: "Demonstrate a Plonky3 → Rocq extraction via

 coq-of-rust " that we adapt to target LLZK instead, with a mechanized translation to

Rocq and the verification of some examples.

Summary

We have built a translation tool from a subset of the LLZK language to the Rocq formal

verification language. This tool is built in C++ as an additional pass in the LLZK

infrastructure, which does nothing but print the Rocq translation. The code is available in

this pull request: https://github.com/formal-land/llzk-lib/pull/1

We have focused on the translation of this example file

test/Analysis/constraint_dependency_graph_pass.llzk, which is about 500 lines long

excluding comments. It uses various LLZK features, including the manipulation of

structures, arrays, function calls, and polymorphism.

We successfully translated this file in Rocq to the code in Garden/LLZK/translated.v, which

is of a similar size compared to the original  .llzk  file. We define a semantics for the LLZK

operators in Garden/LLZK/M.v. We specify and formally verify all the definitions in this

example to validate our reasoning rules, in the file Garden/LLZK/verification.v.
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We wrote three blog posts to explain our work and welcome people to discuss:

🥷 Beginning of a formal verification tool for LLZK

🥷 Semantics for LLZK in Rocq

🥷 Formal verification of LLZK circuits in Rocq

These blog posts provide more technical information about our translation and verification

process.

As future work, we plan to add more automation on the Rocq side to handle the repetitive

steps in the proofs and increase the support for the LLZK language. An example of a

construct that we do not handle yet is building arrays of a dynamic size, for example, in a

 for  loop. A solution is to unroll the loops, but this is not always the most convenient for

the verification process.

Translation

The translation is done in a single pass in C++, pretty-printing the Rocq translation on the

fly. We indent the output to make it readable. Most of the lines are short, as in SSA form,

only one operation is applied per line.

We had trouble printing the names of the variables, as this information is not available in

the AST. For that, we reuse pretty-printing facilities from the MLIR library, which does the

work to generate reasonable and non-conflicting names. This part is still a little bit fragile

and slow on large files (thousands of lines).

Here is an LLZK example that we will translate in this report:

function.def @global_add(%a: !felt.type, %b: !felt.type) -> !felt.type {

  %c = felt.add %a, %b

  function.return %c : !felt.type

}

struct.def @Adder {

  struct.field @sum : !felt.type {llzk.pub}

  function.def @compute(%a: !felt.type, %b: !felt.type) -> !struct.type<@Adder> 

    %self = struct.new : !struct.type<@Adder>

    %sum = function.call @global_add(%a, %b) :

      (!felt.type, !felt.type) -> (!felt.type)

    struct.writef %self[@sum] = %sum : !struct.type<@Adder>, !felt.type

    function.return %self : !struct.type<@Adder>

  }

  function.def @constrain(

      %self: !struct.type<@Adder>, %a: !felt.type, %b: !felt.type

  ) {

    %sum = struct.readf %self[@sum] : !struct.type<@Adder>, !felt.type

    %c = function.call @global_add(%a, %b) :

https://formal.land/blog/2025/07/28/llzk-to-rocq-beginning
https://formal.land/blog/2025/07/30/llzk-to-rocq-semantics
https://formal.land/blog/2025/07/31/llzk-to-rocq-verification


Representation

We make a shallow embedding of LLZK in Rocq, using purely functional definitions for as

many features as possible, including arrays, structures, and field elements manipulations,

as well as  for  loops which must be bounded. We still have some side effects, to enforce

a polynomial constraint, or mutate arrays or structures. We encode these side effects in a

free monad.

Here is the generated Rocq translation of the example above:

Here are the monad primitives that we currently have in Rocq:

      (!felt.type, !felt.type) -> (!felt.type)

    constrain.eq %sum, %c : !felt.type

    function.return

  }

}

Definition global_add {p} `{Prime p}

    (arg_fun_0 : Felt.t) (arg_fun_1 : Felt.t) :

    M.t Felt.t :=

  let var_0 : Felt.t := BinOp.add arg_fun_0 arg_fun_1 in

  M.Pure var_0.

Module Adder.

  Record t : Set := {

    sum : Felt.t;

  }.

  Global Instance IsMapMop {ρ} `{Prime ρ} : MapMod t := {

    map_mod α := {|

      sum := map_mod α.(sum);

    |};

  }.

  Definition constrain {p} `{Prime p}

      (arg_fun_0 : Adder.t) (arg_fun_1 : Felt.t) (arg_fun_2 : Felt.t) :

      M.t unit :=

    let var_0 : Felt.t := arg_fun_0.(Adder.sum) in

    let* var_1 : Felt.t := global_add arg_fun_1 arg_fun_2 in

    let* _ : unit := M.AssertEqual var_0 var_1 in

    M.Pure tt.

  Definition compute {p} `{Prime p}

      (arg_fun_0 : Felt.t) (arg_fun_1 : Felt.t) :

      M.t Adder.t :=

    let* var_self : Adder.t := M.CreateStruct in

    let* var_0 : Felt.t := global_add arg_fun_0 arg_fun_1 in

    let* _ : unit := M.FieldWrite var_self.(Adder.sum) var_0 in

    M.Pure var_self.

End Adder.



Here is a quick explanation of the primitives:

 Pure  is the return of a value

 AssertEqual  is the equality constraint (of two field elements)

 AssertIn  is the membership constraint (of a field element in an array)

 CreateStruct  is the creation of a structure (undefined for now)

 FieldWrite  is forcing the field of a structure to be equal to a given value

 Let  is the monadic bind

Reasoning rules

We use the usual reasoning principles for the purely functional part of the translation. For

the side effects, we have the following rules in Rocq:

Module M.

  Inductive t : Set -> Set :=

  | Pure {A : Set} (value : A) : t A

  | AssertEqual {A : Set} (x1 x2 : A) : t unit

  | AssertIn {A : Set} {Ns : list nat} (x : A) (array : Array.t A Ns) : t unit

  | CreateStruct {A : Set} : t A

  | FieldWrite {A : Set} (field : A) (value : A) : t unit

  | Let {A B : Set} (e : t A) (k : A -> t B) : t B.

End M.

Module Run.

  Reserved Notation "{{ e 🔽 output , P }}".

  Inductive t : forall {A : Set}, M.t A -> A -> Prop -> Prop :=

  | Pure {A : Set} (value : A) :

    {{ M.Pure value 🔽 value, True }}

  | AssertEqual {A : Set} (x1 x2 : A) :

    {{ M.AssertEqual x1 x2 🔽 tt, x1 = x2 }}

  | AssertIn {A : Set} {Ns : list nat} (x : A) (array : Array.t A Ns) :

    {{ M.AssertIn x array 🔽
      tt,

      exists indexes, Array.MultiIndex.Valid.t indexes /\

      Array.read array indexes = x

    }}

  | CreateStruct {A : Set} (value : A) :

    {{ M.CreateStruct 🔽 value, True }}

  | FieldWrite {A : Set} (field : A) :

    {{ M.FieldWrite field field 🔽 tt, True }}

  | Let {A B : Set}

      (e : M.t A) (k : A -> M.t B) (value : A) (output : B) (P1 P2 : Prop) :

    {{ e 🔽 value, P1 }} ->

    (P1 -> {{ k value 🔽 output, P2 }}) ->

    {{ M.Let e k 🔽 output, P1 /\ P2 }}

  | Implies {A : Set} (e : M.t A) (value : A) (P1 P2 : Prop) :

    {{ e 🔽 value, P1 }} ->

    (P1 -> P2) ->



The notation:

means that we can reduce the monadic expression  e  to the value  output  and that the

property  P  is true if we validate all the constraints (meaning that the circuit validates the

witness).

Our goal will be to show that we can evaluate the monadic expression of a circuit with a

property  P  of the form:

to ensure that the circuit has no under-constraints.

Here is a short explanation of each rule:

 Pure : we directly return the purely functional value and add no constraint

 AssertEqual : we add the equality constraint between the two arguments, and return

the unit value  tt 

 AssertIn : we add the membership constraint between an element and an array

 CreateStruct : we create a structure that is declared in the code but not defined yet.

Here, the value of the structure is a "prophecy" and must be correctly guessed in the

proof in order not to get stuck later in the proof.

 FieldWrite : we force, or check depending on the interpretation, the field of a

structure to be equal to a given value

 Let : we bind two monadic expressions, returning the conjunction of the two

properties for the constraints

 Implies : we can rewrite the property  P  to a nicer formula, as long as this is a

property that we imply with the current one. Note that we are interested in verifying

an implication but not an equivalence, as this is enough to ensure that the circuit has

no under-constraints.

Example proof

We specify and verify the example above to ensure that the  constrain  function cannot

validate a witness that is not the one generated by the  compute  function (no under-

    {{ e 🔽 value, P2 }}

  where "{{ e 🔽 output , P }}" := (t e output P).

End Run.

{{ e 🔽 output , P }}

outputs = expected_outputs_of inputs



constraints). We have done this exercise of specification and verification for the whole

example file that we are translating, which is about 500 lines long.

The formal specifications and proofs of the examples above are as follows. More details

are available in the blog posts.

Auxiliary function  global_add 

Compute function

Constrain function

Lemma global_add_eq {p} `{Prime p} (x y : Felt.t) :

  {{ global_add x y 🔽 ((x + y) mod p)%Z, True }}.

Proof.

  apply Run.Pure.

Qed.

Lemma compute_eq {p} `{Prime p} (x y : Felt.t) :

  {{ Adder.compute x y 🔽

    spec x y, True

  }}.

Proof.

  unfold Adder.compute.

  eapply Run.Implies. {

    eapply Run.Let. {

      eapply Run.CreateStruct with (value := Adder.Build_t _).

    }

    intros _.

    eapply Run.Let. {

      apply global_add_eq.

    }

    intros _.

    eapply Run.Let. {

      eapply Run.FieldWrite.

    }

    intros _.

    apply Run.Pure.

  }

  easy.

Qed.

Lemma contrain_implies {p} `{Prime p}

    (self : Adder.t)

    (x y : Felt.t) :

  let self := map_mod self in

  {{ Adder.constrain self x y 🔽
    tt,

    self = spec x y

  }}.

Proof.

  unfold Adder.constrain.



Conclusion

We are thankful to the Ethereum Foundation for funding this work and this opportunity,

and we are open to any feedback or discussion.

In the future, we plan to continue extending the support for the LLZK language and to add

more automation on the proof side in Rocq.

🌲

  eapply Run.Implies. {

    eapply Run.Let. {

      apply global_add_eq.

    }

    intros _.

    eapply Run.Let. {

      apply Run.AssertEqual.

    }

    intros _.

    apply Run.Pure.

  }

  unfold spec.

  hauto lq: on.

Qed.

https://ethereum.foundation/

