Grant Report: Ethereum Foundation

Verification of a zkVM Plonky3 chip in
Rocq

Date: 2025-08-28

To: Ethereum Foundation https://ethereum.foundation/
From: Formal Land (Arae) https://formal.land/
Contact: guillaume.claret@formal.land

Vv
V"

v

This grant report aims to answer the third milestone "Formally verify the soundness
and correctness of a relevant zkVM component(e.g., an SP1 chip)" of our grant

"Plonky3 in Rocq".

Summary

For this grant milestone, we formally verified in Rocq the soundness and correctness of
the Plonky3 chip branch_eq of OpenVM.

We chose this chip after discussing with the OpenVM team, which told us this was a
relevant item to look at. To make sure our Rocq model is equivalent to the Rust
implementation of the circuit, we also built a translation mechanism from Plonky3 to our

Garden circuit framework.

Extraction from Plonky3 to Rocq

We first tried to do the translation from Plonky3 to Rocq using coqg-of-rust, as the circuits
are described in an embedded DSL in Rust. But this approach was too time-consuming, as
we were regularly encountering new Rust features or standard library definitions that were

not supported yetin cog-of-rust .

https://ethereum.foundation/
https://formal.land/
https://rocq-prover.org/
https://github.com/Plonky3/Plonky3
https://github.com/openvm-org/openvm/blob/main/extensions/rv32im/circuit/src/branch_eq/core.rs
https://openvm.dev/
https://github.com/formal-land/garden
https://github.com/formal-land/coq-of-rust

In order to reduce the risk of building a too complex solution, we went with the direct
pretty-printing of the constraints. Indeed, as the circuit is generated once and for all for a
given zkVM, it is enough to make sure we have the same set of constraints on the Rust
and Rocq sides to ensure we are verifying the actual implementation. We pretty-print the

constraints on both sides and make sure they are producing the exact same file.

Here is what the pretty-printing of a circuit looks like:

o
@

Trace *
Message [N
eval row
Message (%
eval row::flags
AssertZero:
Mul:
Variable: O
Sub:
Variable: 0
Constant: 1
AssertZero:
Mul:
Variable: 1
Sub:
Variable: 1
Constant: 1
AssertZero:
Mul:
Variable: 2
Subi:
Variable: 2
Constant: 1

A challenge of the pretty-printing approach is that the produced constraints can be very
large. For example, for the sha256 circuit of OpenVM on which we ran an experiment, the

output was around 40,000 lines long, for a source Rust file of less than a thousand lines.
We made these two design choices to simplify the comparison of the constraints files:

1. Adding a logging command to Plonky3. This command has no effect but inserts a
string message in the list of constraints produced at the end, so that we can recognize
in which function or code block a particular constraint comes from. This information is
generally enough to quickly identify where the mistakes were in the model, according

to our experiment on the sha256 circuit.

2. Flattening the associative operators. The addition and multiplication of polynomial
expressions are the most common operators used to build constraints. We flatten
these binary operators so that they apply to a list of parameters instead of two at a
time. This reduced most of the nested levels of the polynomial expressions we were
printing, and clarified the qdiff comparison between the two files of constraints.

Pretty-printing in Rust

The code for the pretty-print is available in our pull request add command to pretty-print
circuits. The main part is the introduction of a mock AirBuilder named RocgAirBuilder
that does nothing but accumulate the constraints to pretty-print them at the end of a

circuit's construction:

enum Constraint<E> {
AssertZero (E),
Message (String),

Interaction (Interaction<gE>),

struct RocgAirBuilder {
main: RowMajorMatrix<SymbolicVariable<Goldilocks>>,
constraints: Vec<Constraint<SymbolicExpression<Goldilocks>>>,

We handle three kinds of constraints:

e Assertzero : a direct equality constraint between a polynomial expression and zero.
e Message : a pretty-printed string that clarifies the source of the constraints.

e Interaction : a special constraint for OpenVM's buses.

We use symbolic expressions to keep their structures explicit and to be able to print their

syntax trees.

Pretty-printing in Rocq

As Rocq is a strict, purely functional language, what we actually do is to define a function
that translates a list of circuit constraints to a string, which we later extract into a

snapshot file.
Here are the main technical decisions we made:

1. Using the PrimString module instead of the usual string module. It enables much
better performance by using native OCaml strings internally, instead of building strings
using an explicit inductive definition going down to the bit level.

2. Designing a type-class adding a pretty-printing capability to all data structures we
want to display.

3. Designing a new type of monad, with a deep embedding of the polynomial variables
and expressions, instead of using a shallow embedding like in the rest of the Garden
framework for circuits. This was required to be able to pretty-print the structure of the

expressions.

https://github.com/formal-land/openvm/pull/1
https://github.com/formal-land/openvm/pull/1
https://rocq-prover.org/doc/master/corelib/Corelib.Strings.PrimString.html

This new monad is named wMexpr.t and is located in the file Garden/Plonky3/MExpr.v. We

define with it equivalence rules to compare a circuit in the deep-embedding form to its

version in the shallow embedding form:

Module Eqg.
(** Equality between the [MExpr.t] and the [M.t] monad. *)
Inductive t {Al A2 : Set} "{Eval.C Al A2} {p} " {Prime p} (env : Env.t)

End

MExpr.t Al -> M.t A2 -> Prop :=

Pure (value : Al) value'
Eval.eval env value = value' ->
t env (Pure value) (M.Pure value')
AssertZero (expr : Expr.t) expr' (value : Al) value'
Eval.eval env expr = expr' ->
Eval.eval env value = value' ->
t env (AssertZero expr value) (M.AssertZero expr' wvalue')
Call (e : MExpr.t Al) (e' : M.t A2)
t env e e' =>
t env (MExpr.Call e) (M.Call e'")
Let {B1 B2 : Set} "{Eval.C Bl B2}
(e : MExpr.t Bl) (k : Bl -> MExpr.t Al)
(e' ¢ M.t B2) (k' : B2 -> M.t A2)
t env e e' ->
(forall (value : Bl),
t env (k value) (k' (Eval.eval env value))

) =

t env (MExpr.Let e k) (M.Let e' k')

When (condition : Expr.t) condition' (body : MExpr.t Al) (body' : M.t A2)
Eval.eval env condition = condition' ->

t env body body' ->

t env (MExpr.When condition body) (M.When condition' body').

Eq.

These rules are very straightforward to apply and state that the evaluation function of a

polynomial expression, given some values assigned to each of the variables, commutes

with the rest of the code. We have done the verification work to ensure that our definition

of the branch eqg circuitin M.t is equivalent to its definition in MExpr.t , which is itself

equivalent to the Rust implementation of the circuit when pretty-printed.

The part with the MExpr.t definition and proof of equivalence is quite verbose, and we

are working on a new mechanism to pretty-print the constraints directly from the shallow

definition in M.t , using meta-programming in Rocq.

Definition of the circuit in Rocq

The definition of the pranch eqg circuitin m.t is available in the file

Garden/OpenVM/BranchEqg/core_with_monad.v. Here is the definition of its main function

eval .

https://github.com/formal-land/garden/blob/main/Garden/Plonky3/MExpr.v
https://github.com/formal-land/garden/blob/main/Garden/OpenVM/BranchEq/core_with_monad.v

Definition eval {p} "{Prime p} {NUM LIMBS : Z}

(self : BranchEqualCoreAir.t NUM LIMBS)

(local : BranchEqualCoreCols.t NUM LIMBS Z)

(from pc : 2)

M.t (AdapterAirContext.t NUM LIMBS 7) :=
let flags : list Z := [

local. (BranchEqualCoreCols.opcode beq flag);

local. (BranchEqualCoreCols.opcode bne flag)

] in

let* is valid : Z :=
M.List.fold left
(fun acc flag =>
let* := M.assert bool flag in
M.pure (BinOp.add acc flag)
)

Z.zero
flags in
let* := M.assert bool is valid in
let* := M.assert bool local. (BranchEqualCoreCols.cmp result) in
let a : Array.t Z NUM LIMBS := local. (BranchEqualCoreCols.a) in
let b : Array.t Z NUM LIMBS := local. (BranchEqualCoreCols.b) in
let inv_marker : Array.t Z NUM LIMBS := local.(BranchEqualCoreCols.diff inv ma

let* cmp _eq : Z :=
M.pure (
BinOp.add
(BinOp.mul local. (BranchEqualCoreCols.cmp result) local. (BranchEqualCore
(BinOp.mul (M.not local. (BranchEqualCoreCols.cmp result)) local. (BranchkE«

) in

let* := M.for in zero to n NUM LIMBS (fun i =>
M.assert zero (BinOp.mul cmp eq (BinOp.sub (Array.get a i) (Array.get b 1i)))

) in
let sum : Z := sum for in zero to n starting from NUM LIMBS (fun i =>
BinOp.mul (BinOp.sub (Array.get a i) (Array.get b i)) (Array.get inv marker

) cmp_eq in
let* := M.when is valid (M.assert one sum) in

let flags with opcode integer : list (Z * Z) :=
[
(local. (BranchEqualCoreCols.opcode beq flag), 0);
(local. (BranchEqualCoreCols.opcode bne flag), 1)
] in
let expected opcode : Z :=
Lists.List.fold left
(fun acc '(flag, opcode) =>
BinOp.add acc (BinOp.mul flag opcode)
)
flags with opcode integer
0 in
let expected opcode : Z :=
BinOp.add expected opcode self. (BranchEqualCoreAir.offset) in

let to pc : 7%
BinOp.add

(BinOp.add
from_pc
(BinOp.mul local. (BranchEqualCoreCols.cmp result) local. (BranchEqualCore

)

(BinOp.mul (M.not local. (BranchEqualCoreCols.cmp result)) self. (BranchEqua
in
M.pure {
AdapterAirContext.to pc := Some to pc;
AdapterAirContext.reads := [a; Dbl;
AdapterAirContext.writes := [];
AdapterAirContext.instruction := {|
ImmInstruction.is valid := is valid;
ImmInstruction.opcode := expected opcode;
ImmInstruction.immediate := local. (BranchEqualCoreCols.imm) ;

l'}s
[}.

Except for differences in notations, the code is very similar to its Plonky3 version in Rust.
The main difference is the introduction of a new constraint, which is a side-effect in both
Rust and Rocq. For the Rust version, we mutate the builder structure to add a new

equality constraint to the existing ones:

builder.when (is_valid.clone()) .assert one (sum) ;

On the Rocq side, we make a side-effect in the M.t monad:

let* := M.when is valid (M.assert one sum) in

Also, we do not need to manage the memory with .c1lone() calls or the use of references

& , as the memory management it automatic.

Determinism

The determinism of the circuit (also called the absence of under-constraints) is probably
the most important property, as otherwise an attacker could forge an invalid execution
trace with forbidden transactions, and this property is almost impossible to check by

testing.

We state the determinism of a circuit by giving a function relating the values of the output
variables to the values of the input variables if all the constraints of the circuit are

satisfied.

Here is the statement for the branch eq circuit, appearing below its definition in the

source Rocq file:

{{ eval self local from pc ii
{1
AdapterAirContext.to pc :=
Some (BinOp.add from pc (
if expected cmp result then
local. (BranchEqualCoreCols.imm)
else
self. (BranchEqualCoreAir.pc step)
))

AdapterAirContext.reads := [local. (BranchEqualCoreCols.a); local. (BranchEqua
AdapterAirContext.writes := [];
AdapterAirContext.instruction := {|

ImmInstruction.is valid := 1;

ImmInstruction.opcode :=
BinOp.add local. (BranchEqualCoreCols.opcode bne flag) self. (BranchEqualC
ImmInstruction.immediate := local. (BranchEqualCoreCols.imm)
[}
[},
local. (BranchEqualCoreCols.cmp result) = Z.b2z expected cmp result

b

It gives the explicit expression of the result of the branch eq circuit, which in Rust is of

type:

pub struct AdapterAirContext<T, I: VmAdapterInterface<T>> ({
/// Leave as ‘None' to allow the adapter to decide the ‘to pc’ automatically
pub to pc: Option<T>,
pub reads: I::Reads,
pub writes: I::Writes,
pub instruction: I::ProcessedInstruction,

For this chip, it basically says that depending on the result of the equality comparison
between the two parameters a and b, which are integers decomposed into limbs, the
instruction will either make a jump of imm offset, or proceed to the next instruction

incrementing the Program Counter (PC) by the regular amount pc step .

There is only one output variable for this chip: cmp result . We say that it must be the
field representation (0 or 1) of the boolean expected cmp result which is explicitly

computed by:

let expected cmp result : bool :=
match branch equal opcode with
| BranchEqualOpcode.BEQ =>
if Array.Eg.dec local. (BranchEqualCoreCols.a) local. (BranchEqualCoreCols.b)
true
else
false
| BranchEqualOpcode.BNE =>
if Array.Eg.dec local. (BranchEqualCoreCols.a) local. (BranchEqualCoreCols.b)

false

else
true

end

The expected result is reversed depending on the value of branch equal opcode given

through the input variables, which we expect to be well-formed.

Proof of determinism

We use two ingredients to prove the determinism of the circuit:

1. Our reasoning rules to progress through the monadic code of the circuit, accumulating

the constraints along the way.

2. Our field arithmetic tactics to show that the polynomial equations from the constraints
imply the expected equations on the output variables.

At the outer layer of the proof, we use the tactic:

eapply Run.LetAccumulate with (value := ...) (Pl := ...).

It applies to each of the top-level 1et* bindings in the computation of the circuit, and
enables us to state:

o An expression of the result of the binding, generally the unit value.

» An expression for the predicate implied by the constraints of the binding.

Inside each 1et* binding, we reason by rewriting to simplify the polynomial equations,
and by cases to explore all possible branches for the equality or inequality of the
parameters. At the end of the proof, we aggregate the properties implied by each 1et*

into the main statement using the tactic tauto .

Completeness and correctness

The functional correctness of this circuit is given by the explicit expression for its result

and for its output variable cmp result .

For the completeness property, we introduce a new predicate:

{{ e value }}

stating that a circuit ¢ reduces to the value vaiue , validating all the constraints it

encounters when reducing its expression. The rules are:

Inductive t {A : Set} : M.t A -> A -> Prop :=
| Pure (value : A)

{{ M.Pure value value }}
| AssertZero (x : Z) (value : A)
x = 0 ->
{{ M.AssertZero x value value }}
| Call (e : M.t A) (value : A)
{{ e value }} ->
{{ M.call e value }}
| Let {B : Set} (e : M.t B) (value : B) (k : B -> M.t A) (value k : A)
{{ e value }} ->
{{ k value value k }} ->
{{ M.Let e k value k }})
| When (condition : Z) (e : M.t A) (value : A)
(condition <> 0 -> {{ e value }}) ->
{{ M.When condition e value }}

We prefer to keep this predicate as separated from the determinism one, as the reasoning

behind each proof tends to be different. In the determinism case, we want to show that

the constraints imply an explicit value for the output variables. For the completeness

property, we want to show that a given expression for the output variable indeed makes all

the constraints valid.

The completeness statement for the eva1l function is also in the file
Garden/OpenVM/BranchEqg/core_with_monad.v. We assume that we are given a correct
value for the oracle diff inv marker and say that we return the expected output (the

same as in the determinism statement), validating all the constraints:

Lemma eval complete "~ {Prime goldilocks prime} {NUM LIMBS : Z}
(self : BranchEqualCoreAir.t NUM LIMBS)
(a' Array.t z NUM LIMBS)
(b'" : Array.t Z NUM LIMBS)
(imm' : Z)
(diff inv marker' : Array.t Z NUM LIMBS)
(from pc' : Z7)
(branch_equal opcode : BranchEqualOpcode.t)
(H_ NUM LIMBS : 0 <= NUM LIMBS)

let a := M.map mod a' in
let b := M.map mod b' in
let imm := M.map mod imm' in
let diff inv marker := M.map mod diff inv marker' in
let from pc := M.map mod from pc' in
let expected cmp result := get expected cmp result branch equal opcode a b in
let local :=
{1
BranchEqualCoreCols.a := aj;
BranchEqualCoreCols.b := b;
BranchEqualCoreCols.cmp result := Z.b2z expected cmp result;
BranchEqualCoreCols.imm := imm;

BranchEqualCoreCols.opcode beq flag :=
match branch equal opcode with
| BranchEqualOpcode.BEQ => 1
| BranchEqualOpcode.BNE => 0
end;

BranchEqualCoreCols.opcode bne flag :=

https://github.com/formal-land/garden/blob/main/Garden/OpenVM/BranchEq/core_with_monad.v

match branch_equal opcode with
| BranchEqualOpcode.BEQ => 0
| BranchEqualOpcode.BNE => 1
end;
BranchEqualCoreCols.diff inv marker := diff inv marker;
[} in
forall
(* We assume a [diff inv marker] oracle with the following property *)
(H diff inv _marker
if Array.Eg.dec a b then
(* It can be anything in case of equality *)
True
else
(* Otherwise it is the inverse of the difference in exactly one case, ze
exists k, 0 <= k < NUM LIMBS /\
forall i, 0 <= i < NUM LIMBS ->
if 1 =? k then

BinOp.mul (BinOp.sub (a.[i]) (b.[i])) diff inv marker.[i] = 1
else
diff inv marker.[i] = O

)I
{{ eval self local from pc
get expected result self local from pc expected cmp result

bl o

We do the proof by step through the code using the definition of the predicate, with a
proof by induction for the loop iterating over the limbs of the arrays a, b, and

diff inv marker .

Conclusion

We have seen how to translate an example of Plonky3 chip of an existing zkVM to Rocq,
and how to formally verify it, first for the soundness, then for the completeness, the
functional correctness being included in these two properties with our representation. The
branch_eq Circuit was interesting as it features the three main kinds of variables, input,
output, and oracle, and it returns some field expressions in addition to enforcing the

constraints. We hope the work on this example will enable verifying more customer circuits
in the future.

We are thankful to the Ethereum Foundation for funding this work and this opportunity,
and we are happy to hear your thoughts.

&

https://ethereum.foundation/

