
VERIFICATION OF
INTERNAL
ERRORS
Prepared For :

FORMAL LAND

September - October
2022The Tezos Foundation

At Formal Land, we do formal verification on the OCaml
implementation of the protocol of Tezos. We proceed by
translating the code to the proof system Coq using the
translator coq-of-ocaml. We then write specifications and
proofs on the generated Coq code.

We host the result of our work on the website coq-tezos-of-
ocaml.

ABOUT

FORMAL LAND

https://formal.land/
https://github.com/formal-land/coq-of-ocaml
https://formal-land.gitlab.io/coq-tezos-of-ocaml/

Let us first say a few words about the work we have done on
the verification of the absence of internal errors in the
protocol of Tezos. This work was done in September and
October 2022. The goal is to formally verify that for any
protocol inputs, the errors classified as “unexpected” can
never occur. The only errors that should occur are related to
mistakes in the user inputs, and should be properly reported
to the user.

The verification of internal errors we covered in the last two
months can be estimated at around half of the protocol
code depending on "alpha_context.ml". For that, we fully
axiomatized the storage system ("storage.ml" and
"*_storage.ml" files). Once we have actually verified the
storage files, we will probably discover new invariants to
check, and that will propagate in the proofs of the project.
We have already verified most of the "*_repr.ml" files, or
completed the lemmas if needed.

INTRODUCTION

FORMAL LAND

While verifying the absence of internal errors, we also have
to verify the preservation of the invariants of the data
structures of the protocol. This intermediate step is
necessary to show that some internal errors cannot be
reached. This also helps making sure that the protocol code
is sound, and documents the data invariants. We plan to
backport these invariants as comments in the protocol
code, as suggested by some OCaml developers.

We have not found critical errors in the code. However, we
found a few potential integer overflows that we reported to
the OCaml developers. These overflows would require
further analysis to know if they are reachable, or changes in
the protocol code to make sure they cannot happen.

For the parts we have verified, our proofs show that the
functions are indeed correctly preserving the invariants and
cannot raise internal errors. As the protocol evolves, our
formalization will help making sure that no existing
properties are broken by new code. The current proofs are
also the basic structure to propagate the invariants on the
storage once we have a complete verification of it.

FORMAL LAND

We will present some salient points of our methodology to
track the internal errors, and describe the main files we have
verified.

Protocol version: Unless specified otherwise, we wrote our
proofs for the protocol "proto_alpha" translated to Coq at
the date of 2022-09-08. As a reference, the folder for the
protocol L was created the 2022-10-08 with the Merge
request 6419. Our next task will be to adapt these proofs to
the current version of the protocol L and "proto_alpha".

FORMAL LAND

https://gitlab.com/tezos/tezos/-/merge_requests/6419

Classification of the errors
Handling of assert and exceptions
Formal proofs in Coq

We proceeded in three steps:

1.
2.
3.

METHODOLOGY

FORMAL LAND

1) CLASSIFICATION OF THE
ERRORS

asserts report
exceptions report
error monad report

We manually classified the protocol errors in our previous
grant, and made the following reports:

https://formal-land.gitlab.io/coq-tezos-of-ocaml/docs/reports/asserts
https://formal-land.gitlab.io/coq-tezos-of-ocaml/docs/reports/exceptions
https://formal-land.gitlab.io/coq-tezos-of-ocaml/docs/reports/errors

the assert errors,
the error "Storage_error" of the error monad,
corresponding to unexpected errors in the storage file
storage.ml (non-existing keys, unexpected encoding
errors),
a few other errors from the error monad, local to certain
files.

In our analysis, most of the errors from the error monad are
user errors rather than internal errors. The exceptions and
assert are almost always internal errors (there are a few
cases of exceptions with an error handler). For our current
verification effort, we focus on:

The full list of internal errors that we handled is given in the
variable Error.internal_errors. There is still discussion among
the OCaml developers about which errors are considered
internal and which should be considered as user-induced.
The list "Error.internal_errors" might thus be completed over
time. The proofs we have already written should stay the
same except at the points where the newly added internal
errors are raised, which should be captured by refining the
validity predicates which are pivotal in our code (see below).

FORMAL LAND

https://formal-land.gitlab.io/coq-tezos-of-ocaml/docs/environment/v7#Error.internal_errors

FORMAL LAND

2) HANDLING OF ASSERT AND
EXCEPTIONS

For the Michelson part (the "script_*.ml" files), we rely on
the fact that we have written dependent simulations for
most of the code (for the interpreter and type-checker /
parser). In our translation from OCaml to Coq, we
represent exceptions and assert instructions as axioms.
Since our dependent simulations do not use the
primitives assert and the exceptions, the only way we can
write equivalent simulations is if the errors are
unreachable. We have defined simulations for most of
"script_interpreter.ml" and "script_ir_translator.ml" that
are the two main files for Michelson. These simulations
are proven correct for most of the interpreter and a part
of the translator. These proofs and definitions are for the
version K of the protocol.

To verify the assert and exceptions we proceed in two ways,
depending on the part of the code that we cover:

For the rest of the code, we translated as many "assert"s
as possible to the error monad. We made this
modification by hand and maintain this change in our
fork of the protocol https://gitlab.com/formal-
land/tezos/-/merge_requests/7. All the changes are in
the two commits authored by Andrey Klaus on this fork.
We counted 93 asserts in the protocol version we are
working on, and 35 in our forked version. The main
remaining "assert"s, that we have not eliminated yet, are
in the data-encodings or deeply nested in some
algorithms such as the Deque in "sc_rollup_arith.ml". We
have not yet done a monadic translation on the
exceptions, which appear to be less frequent than the
assert.

In the following, we will focus on the verification of errors
that are in the error monad of the protocol.

FORMAL LAND

https://gitlab.com/formal-land/tezos/-/merge_requests/7

Let us describe how we specify and verify that the protocol
code in the error monad does not contain internal errors.

Soundness predicate and validity conditions

We use the following predicate to express that an
expression "e" of type "M? a" (returning a value of type "a" in
the error monad "M?") cannot raise an internal error, and
returns a value satisfying the predicate "P":

letP? x := e in P x

Actually, "letP?" is a monadic notation for "bind_prop"
defined as:

Definition bind_prop {a : Set} (e : M? a)
 (P : a → Prop) : Prop :=
 match e with
 | Pervasives.Ok x ⇒ P x
 | Pervasives.Error err ⇒ Error.not_internal err
 end.

FORMAL LAND

3) FORMAL PROOFS IN COQ

https://formal-land.gitlab.io/coq-tezos-of-ocaml/docs/environment/v7#bind_prop

when the expression "e" is successful, it satisfies the
predicate "P" ;
when "e" raises a list of errors "err" (usually composed of
a single error), no one is classified as internal.

This definition specifies that:

In practice, the verification of a function "f" articulates the
"letP?" both with validity pre- and post-conditions on the
inputs and outputs of "f" as follows:

Lemma f_is_valid : (* in mock-code *)
 forall (x1 ... xn), Valid1 x1 /\ ... /\ Validn xn
 -> letP? (y1,...,yp) := f x1 ... xn in
 Valid1' y1 /\ ... /\ Validp' yp

Intuitively, the above lemma specifies that, when the inputs
of "f" are valid, then if the computation of "f" succeeds, it
ouputs a valid value and if it does not, it does not cause any
internal error.

We have specified and proved such lemmas for all the
functions in "main.ml". This expresses the fact that the calls
to the functions in "main.ml" cannot return an internal error.
These proofs are complete for the file "main.ml", but depend
on other files which can have admitted proofs. We will detail
in the Results section below the files we have worked on.

FORMAL LAND

Example

An example of proof on a simple function is the following. For
the function named "ticket_diffs_of_lazy_storage_diff" from
the file "ticket_accounting.ml" (here in the Coq version as
automatically produced by coq-of-ocaml):

Definition ticket_diffs_of_lazy_storage_diff
 (ctxt : Alpha_context.context)
 (storage_type_has_tickets : Ticket_scanner.has_tickets)
 (lazy_storage_diff : list Alpha_context.Lazy_storage.diffs_item)
 : M? (Ticket_token_map.t Z.t × Alpha_context.context) :=
 if Ticket_scanner.has_tickets_value storage_type_has_tickets then
 let? '(diffs, ctxt) :=
 Ticket_lazy_storage_diff.ticket_diffs_of_lazy_storage_diff ctxt
 lazy_storage_diff in
 Ticket_token_map.of_list_with_merge ctxt diffs
 else
 return? (Ticket_token_map.empty, ctxt).

we write the following Coq specification:

Lemma ticket_diffs_of_lazy_storage_diff_is_valid
 ctxt storage_type_has_tickets lazy_storage_diff :
 Raw_context.Valid.t ctxt →
 List.Forall Lazy_storage_diff.diffs_item.Valid.t lazy_storage_diff →
 letP? '(map, ctxt) :=
 Ticket_accounting.ticket_diffs_of_lazy_storage_diff
 ctxt storage_type_has_tickets lazy_storage_diff in
 Ticket_token_map.Valid.t (fun _ ⇒ True) map ∧
 Raw_context.Valid.t ctxt.

FORMAL LAND

https://formal-land.gitlab.io/coq-tezos-of-ocaml/docs/proto_alpha/ticket_accounting#ticket_diffs_of_lazy_storage_diff
https://formal-land.gitlab.io/coq-tezos-of-ocaml/docs/proto_alpha/proofs/ticket_accounting#ticket_diffs_of_lazy_storage_diff_is_valid

does not return an internal error, and
returns two values "map" and "ctxt" satisfying their
corresponding validity predicates.

stating that given input values, namely "ctxt",
"storage_type_has_tickets" and "lazy_storage_diff", which are
valid, the function "ticket_diffs_of_lazy_storage_diff":

The proof is as follows:

 1. Proof.
 2. intros H_ctxt H_lazy_storage_diff.
 3. unfold Ticket_accounting.ticket_diffs_of_lazy_storage_diff.
 4. destruct Ticket_scanner.has_tickets_value; simpl.
 5. { eapply Error.split_letP. {
 6. now apply
 7. ticket_diffs_of_lazy_storage_diff_is_valid.
 8. }
 9. clear ctxt H_ctxt; intros [diffs ctxt] [H_diffs H_ctxt].
10. now apply Ticket_token_map.of_list_with_merge_is_valid.
11. }
12. { split; trivial.
13. apply Carbonated_map.Make.empty_is_valid.
14. }
15. Qed.

FORMAL LAND

"Ticket_lazy_storage_diff.ticket_diffs_of_lazy_storage_diff"
"Ticket_token_map.of_list_with_merge"
"Ticket_token_map.empty"

On line 4, we reason by cases over the if. On line 5 we split
the reasoning over the error monad binder "let?" into two
parts. With the tactic "apply" we call the validity lemma of
the three external functions we are referring to:

FORMAL LAND

All of the "main.ml" file, most of "validate.ml" and half of
"apply.ml". These proofs can be found in "Main.v",
"Validate.v", and "Apply.v". We also verified the largest
parts of related files such as "amendment.ml" or
"baking.ml". �
Almost all of the "ticket_*.ml" files. An example of proof
file is "Ticket_accounting.v". �

We are writing the proofs of the absence of internal errors
for each protocol file. We axiomatized, for now, the validity
of all the storage-related files, such as "storage.ml" and the
"*_storage.ml" files.

For a quick overview of the files that we still need to review,
specify or verify, there is our milestone page listing all the
files of the protocol that we have/have not checked. Some
of the files in “TODO” are already partially verified (like the
"script_*" files considering the Michelson simulations). Some
of the files in “Done” are specified but not verified, like the
storage files.

We have verified:

RESULTS

FORMAL LAND

https://formal-land.gitlab.io/coq-tezos-of-ocaml/docs/proto_alpha/proofs/main
https://formal-land.gitlab.io/coq-tezos-of-ocaml/docs/proto_alpha/proofs/validate
https://formal-land.gitlab.io/coq-tezos-of-ocaml/docs/proto_alpha/proofs/apply
https://formal-land.gitlab.io/coq-tezos-of-ocaml/docs/proto_alpha/proofs/ticket_accounting
https://gitlab.com/formal-land/coq-tezos-of-ocaml/-/milestones/40#tab-issues

A part of the "sc_rollup*.ml" and "tx_rollup*.ml" files. An
example is "Tx_rollup_l2_context.v", verifying that the two
internal errors named "Key_cannot_be_serialized" and
"Value_cannot_be_serialized" cannot be reached. �
The file "dal_apply.ml" in "Dal_apply.v" �
All the "zk_*.ml" files. An example of proof file is given with
"Zk_rollup_apply.v". �
All the "*_repr.ml files". These files were already mostly
completely verified, including for the absence of
unexpected errors, during previous grants. However, we
continued to extend the proofs, in particular for the new
protocol files. �

For the storage, we use a specification by simulation. We
simulate the storage by a record containing all the sub-
stores (there are around one hundred sub-stores). As this
part is long, verbose, and error-prone, we used a set of Ruby
scripts to generate the simulation and its validity lemmas
(admitted for now). These scripts are in
"scripts/alpha/templates/storage".

FORMAL LAND

https://formal-land.gitlab.io/coq-tezos-of-ocaml/docs/proto_alpha/proofs/tx_rollup_l2_context
https://formal-land.gitlab.io/coq-tezos-of-ocaml/docs/proto_alpha/proofs/dal_apply
https://formal-land.gitlab.io/coq-tezos-of-ocaml/docs/proto_alpha/proofs/zk_rollup_apply
https://gitlab.com/formal-land/coq-tezos-of-ocaml/-/tree/master/scripts/alpha/templates/storage

"Context_generated.v" for the definition of the
simulation,
"Storage_generated.v" for the equality between this
simulation and the code in storage.ml

The outputs of these scripts are in:

Then we specified all the "*_storage.ml" files by hand (36
files). An example is "Sc_rollup_stake_storage.v".

Our next target will be to verify the storage system. We think
that it will make the specifications of the protocol files more
complex, as new conditions will appear, such as the
existence of a certain key in a certain part of the store. But
as this code part is complex, it is also crucial to get the
correct specification.

FORMAL LAND

https://formal-land.gitlab.io/coq-tezos-of-ocaml/docs/proto_alpha/simulations/context_generated/
https://formal-land.gitlab.io/coq-tezos-of-ocaml/docs/proto_alpha/proofs/storage_generated/
https://formal-land.gitlab.io/coq-tezos-of-ocaml/docs/proto_alpha/proofs/sc_rollup_stake_storage

COMMUNICATION

Verifying the skip-list: verification of the skip-list data-
structure, a work that we have done during this summer;
Skip-list verification. Using inductive predicates:
continuation of the previous post on the verification of
skip-list;
Absence of internal errors: a general introduction to the
work on internal errors.

We made a presentation at the proto-call meeting on
Tuesday, October 11th, to present our work to verify the
protocol. We now use the public Slack channel "#coq-tezos-
of-ocaml" to post the changelog of our work on a weekly
basis.

We published three blog posts:

FORMAL LAND

https://formal-land.gitlab.io/coq-tezos-of-ocaml/blog/2022/10/03/verifying-the-skip-list/
https://formal-land.gitlab.io/coq-tezos-of-ocaml/blog/2022/10/03/verifying-the-skip-list-inductive-predicates/
https://formal-land.gitlab.io/coq-tezos-of-ocaml/blog/2022/10/18/absence-of-internal-errors/

CONCLUSION

We are continuing to verify the internal errors for the
remaining protocol files. We think that these proofs are
useful as they cover a large part of the code base, and check
for the propagation of the invariants of the data structures.
We thank the Tezos Foundation to have allowed us to work
on this verification effort.

FORMAL LAND

THANKS!

